【网站优化快速排名软件】_搜索关键词是什么 搜索关键词加个「VS」有什么作用

在使用搜索引擎的时候,引号、星号、加减号等都能帮我们更快地搜到自己想要的结果,那你有没有试过在搜索词后边加个「VS」呢?近日,一位 medium 博主就介绍了「搜索词」+「VS」的妙用。利用该技巧创建的 ego graph 能帮你学习下棋、购买宠物,甚至是追剧。

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

你是否尝试过在搜索引擎里输入一个关键词,然后再输入「vs」,看看它能给你自动匹配出什么东西?

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

事实证明这还挺好玩的,而且还算得上是一种实用技巧,能帮你快速找到你感兴趣的事物的其它对应选项或替代选项。

不仅如此,如果你想要了解一项技术、一款产品或一个概念,这个技巧也能为你提供很有效的帮助。原因有三点:

学习新事物的最好方法是了解它与你已经很熟悉的事物的异同点。当在搜索引擎返回的列表中看到你熟悉的事物时,你心中立马就会浮现出「原来如此」感觉。

操作很简单,几秒钟就搞定了。

在你输入「vs」之后,搜索引擎会认为你想对「vs」前后的事物进行直接比较。你也可以使用「or」,但这样表达的态度远不如 vs 坚决,此时谷歌返回的可选项就可能脱离我们想要的范围,如下所示:

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

「bert or」返回的结果大都和儿童节目《芝麻街》有关,而「bert vs」返回的结果就是和 BERT 模型相关的了。

在这一观察的基础上,如果将谷歌自动填充的关键词再继续使用「vs」来进一步执行「vs」搜索并不断继续,就能得到一个由关键词连接而成的图网络——自我中心图(ego graph):

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

BERT 的自我中心图——半径 25

这一技巧可以很好地用于创建技术、产品或想法之间的心理映射图,并让我们了解它们之间的相关关系。

你也可以自己动手构建这样的图网络。

vs 技巧自动化

你可以使用下面这个 URL 来获取 XML 格式的自动填充建议。这个看起来并不很正式,所以最好别尝试向其发送大量查询。

http://suggestqueries.google.com/complete/search&output=toolbar?&gl=us&hl=en&q=

其中,output=toolbar 会以 XML 格式返回响应结果,gl=us 设定的是国家或地区,hl=en 设定了语言,q= 是你想要自动填充的关键词。

gl 和 hl 可以分别使用标准的两字母国家地区代码或语言代码。

那就上手试试看吧。

首先选择一个初始关键词,我们这里选择 tensorflow。

首先将 q=tensorflow%20vs%20 放入到以上 URL 的对应位置:

http://suggestqueries.google.com/complete/search?&output=toolbar&gl=us&hl=en&q=tensorflow%20vs%20

然后访问它。

这时我们得到【新站快速排名】了返回的 XML。现在我们需要通过一些标准来判断是否应当保留各个自动填充建议。

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

这里使用的标准是:

自动填充的关键词不应包含我们输入的搜索关键词,即 tensorflow;

自动填充的关键词不应重复,比如 pytorch;

不应包含有多个 vs 的选项。

筛选之后,我们得到 5 个合适的关键词,然后丢掉其它的。

这只是清理返回建议列表的一种方法,也可以包含仅有一个词的返回项。但究竟采用什么方法取决于具体用例。

使用这套标准后,我们可以得到以下 5 个经过加权的连接:

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

然后继续。把这 5 个关键词加上「vs」并再次通过以上 URL 搜索自动建议,同样在过滤后保存前 5 个连接。

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

如此不断继续,扩展 target 列中尚未被探索的词。

这样操作的次数足够多之后,我们可以得到一个包含加权边的表格,并且非常适合使用图来可视化。

自我中心图

前面我们已经提到了自我中心图(ego graph)。下面是 tensorflow 的自我中心图。这里的自我中心图是指所有节点与 tensorflow 节点的距离小于特定值的图。

不过,这里的距离是指什么?

首先我们看看这个图:

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

tensorflow 的自我中心图——半径 22

我们已经知道从关键词 A 到关键词 B 的边的权重,根据自动建议列表取值 1 到 5。为了得到无向图,我们只需要将两个方向(A→B 和 B→A)的权重加起来即可,这时权重范围为 1 到 10。

那么,每条边的距离就简单地等于「11 – 权重」。选择 11 的原因是边的最大权重为 10,此时两个关键词都出现在彼此的自动建议列表最上方。基于这一定义,关键词之间的最小距离为 1。每个节点的大小和颜色都由边的数量决定,这表示其出现在自动建议列表中的次数。【快速排名工具免费查询】因此,节点越大,这个概念就越重要。

上面的自我中心图的半径为 22,这表示以 tensorflow 为起点,抵达任何一个节点的距离不超过 22。如果将半径增大至 50,情况又如何呢?

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

tensorflow 的自我中心图——半径 50

很不错吧?这个图包含了 AI 工程师需要了解的大多数已有技术,而且按逻辑进行了聚类。

而这一切都始于一个关键词。

怎样画出这样好看的图?

这要用到一个在线工具 Flourish:https://flourish.studio

它的 GUI 简洁易用,能让你轻松构建图网络与其它图表。值得一试。

如何构建给定半径的自我中心图?

这要用到一个 Python 软件包:networkx,其中有一个很好用的函数:ego_graph。你需要指定半径作为该函【网站排名快速提升】数的输入参数。

ego_grap:hhttps://gist.github.com/davidADSP/35648e480685c6b57ce1efad50170c26#file-ego_graph-py

这里还用到了另一个函数 k_edge_subgraphs 来移除一些偏离主题的关键词。

举个例子,storm 是一个开源的分布式实时计算系统,但同时也是漫威宇宙的一个角色(暴风女)。如果在谷歌搜索框里输入「storm vs」,你猜会出现什么结果?

k_edge_subgraphs 函数可以发现无法被少于或等于 k 次切割分开的节点分组——一般来说 k=2 或 k=3 效果较好。仅保留 tensorflow 所在的子图就能确保我们接近目标,不会偏离到幻想世界去。

使用自我中心图来组织日常生活

不看 TensorFlow 的例子了,我们来看看另一个自我中心图:国际象棋的西班牙开局。

学习国际象棋开局!

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

这一技巧能让你很快得到最常用开局思路的图,以便你组织研究。

好了,现在来点好玩的。

吃得更健康!

羽衣甘蓝(kale)很健康,但你可能想要换个口味?那就用「kale vs」找到 kale 的自我中心图寻找新的健康食材吧。

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

kale 的自我中心图——半径 25

想买只宠物狗!

但狗狗品种那么多,时间有限,选哪个好呢?

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

寻找真爱!

宠物狗和甘蓝还不够,还想找个伴侣?这里有个约会应用 coffee meets bagel 的自我中心图。

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

你甚至还可以用这个技巧来找可能爱看的剧,比如下面这个英剧《The Office(办公室)》的自我中心图。

搜索关键词是什么 搜索关键词加个「VS」有什么作用 

谷歌 + vs,原来如此好用!

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

admin

蒙智黑帽seo【jiaoshubi.cn】立足于最前沿的黑帽seo技术实现7-15天首页快速上排名,欢迎大家探讨进步!!!